

OAFlux2: Satellite-Based Ocean Surface Stress in Ice-Free and Ice-Covered Polar Oceans

Lisan Yu & Chao Liu Woods Hole Oceanographic Institution

IOVWST May 5-9, 2025 Darmstadt, Germany

- Wind speed & vector (0.25°, daily, 1988-present) are derived from 19 sensors, including SSM/I, SSMIS, AMSR-E, AMSR2, WindSat, NSCAT, QuikSCAT, SeaWinds, OSCAT, ASCAT A, B, & C.
- Daily mean is merged from 6-hourly fields with missing gaps filled by ML predicted values.
- Wind Stresses are calculated using COARE v3.6 algorithm.
- OAFlux2 is fully validated using a total of 160 buoys, including active, archived, and NDBC buoys.

Mean (1988-2024)

Scatterometer-derived wind datasets contain gaps in ice-covered polar seas

March 2023

Sept 2023

NSIDC Satellite-derived Ice Motion

March 2023

Sept 2023

Ocean-Surface Stress in the Polar Seas and its Derivation

$\tau_{\text{aw,}}$ the air-water stress for the open water:

 $\tau_{aw} = \rho_a C_{D,aw} |\mathbf{U}_{10}|\mathbf{U}_{10}|$

• τ_{iw} , the ice-water stress for the water covered by ice:

 $\tau_{iw} = \rho_w C_{D,iw} \left| \mathbf{U}_{ice} - \mathbf{U}_{E} - \mathbf{U}_{g} \right| \left(\mathbf{U}_{ice} - \mathbf{U}_{E} - \mathbf{U}_{g} \right)$

• The total ocean-surface stress: $\tau_o = \alpha \tau_{iw} + (1 - \alpha)\tau_{aw}$, where α is sea ice extent.

• Ekman velocity:
$$U_E = \frac{\sqrt{2}e^{-i(\pi/4)}}{f\rho_w D_e} \tau_o$$

- Richardson iteration method is applied to solve τ_o and U_E iteratively.

Input datasets

	Variable	Product	Resolution		
	U ₁₀	OAFlux2 Satellite Ocean-Surface Winds	Daily 0.25°, 1988-present		
	U _{ice}	Polar Pathfinder Sea Ice motion V4	Daily 25 km, 1978-present		
	U _g	CLS multi-mission Ocean Altimeter SSH	3-Day 25 km, 2011-2021		
1	Vehicle Product Randulton Un DRFuct Sealth Coun-Surface Wind Deh/L207 (BR-present) Um DRe Product Sealth Coun-Surface Wind Deh/L207 (BR-present) Um D.Res Product Sealth County Deh/L207 (BR-present) Up D.Res Product Sealth County Deh/L207 (BR-present) Up D.Res Product Sealth County Mission Deh/L207 (BR-present) up Default Sealth County Mission 12 Deh/L207 (BR-present)	Goddard/NSIDC Sea Ice Concentrations V2	Daily 25 km, 1978-present		

Liu, C. & Yu, L. (2025a):Satellite-based Analysis of Ocean-Surface Stress across the Ice-free and Ice-covered Polar Oceans. Earth Syst. Sci. Data Discuss. https://doi.org/10.5194/essd-2025-14, in review.

4

Daily Maps of Arctic Ocean Surface Stress and Ekman Pumping Rates

Ocean-Surface Stress from the Tropics to Polar Seas

Mean (2011-2018) Ocean Surface Stress

τ_o, Time Mean

cm/dav

Arctic

20 cm/day

cm/day

Antarctic

Ekman Pumping

Solid and dashed black lines represent the March and September sea ice boundaries, respectively, defined by 15% sea ice concentration averaged over 2011-2018.

0.06

Science Applications: I. Understanding ITP current measurements

Ekman pumping

Ice-Tethered Profilers (<u>http://www.whoi.edu/itp</u>)

Unit ID	Start	Start		Last		# of Profiles
	Position	Date	Position	Date	_	
ITP-70	76.81°N	8/26/2013	77.11°N	7/15/2014	324	3713
	138.89°W		156.51°W			
ITP-77	73.37°N	3/11/2014	75.89°N	10/2/2014	206	2367
	134.99°W		158.50°W		(153*)	(1800*)
ITP-78	74.36°N	3/12/2014	74.08°N	8/6/2014	148	1694
	135.14°W		145.43°W		(130*)	(1500*)
ITP-79	75.38°N	3/22/2014	75.02°N	9/30/2014	193	1694
	136.50°W		148.37°W		(143*)	(1636*)
ITP-80	77.36°N	8/14/2014	75.68°N	5/24/2015	284	3260
	146.15°W		151.79°W			

$(U_{EK} + U_{geo})$ vs U_{IIP} Measurements

ITP80 Drift Track (as of 2015/05/2

days

R_squared

	R ²			
ITP ID	$U_{EK} + U_{geo}$	$V_{EK} + V_{geo}$		
ITP 70	0.58	0.36		
ITP 77	0.36	0.23		
ITP 78	0.80	0.44		
ITP 79	0.39	0.73		
ITP 80	0.65	0.20		

WOODS HOLE OCEANOGRAPHIC INSTITUTION

days

Science Applications: II. Mesoscale ocean processes at the ice edge

Sept 10, 2022

Science Applications: III. Wintertime (DJFM) ocean-surface stress changes in the Beaufort Sea

Ocean-surface

Ekman pumping

Liu, C. & Yu, L. (2025b) Winter Intensification of Ocean Surface Stress Drives Ekman Downwelling in the Beaufort Gyre Since the 2010s. JGR – Oceans. In review.

The reduction in ice thickness enhances air-ice-ocean coupling, increasing the sensitivity of ocean stress beneath the ice to changes in surface winds.

-0.5

0.5

Science Applications: IV. Changes in September ocean-surface stress

- We have developed a new dataset for ocean-surface stress across both ice-free and icecovered regions in the Arctic and Antarctic seas.
- The dataset is derived from satellite-based ocean-surface winds, ice motion vectors, and geostrophic velocities, providing a first-order description of the spatial and temporal variability in surface stress, offering insight into air-ice-ocean interactions across polar regions.
- The resulting ocean current velocities are compared with ITP measurements, showing good alignment on monthly mean scales, though less so for day-to-day variability.
- Arctic ice has been decreasing in both extent and thickness, which affects air-ice-ocean coupling. As a result, the ocean-surface stress becomes more sensitive to changes of atmospheric circulation pattens.
- The most significant changes occur near the ice edge, where mesoscale variability is high and surface stress responds directly to retreat in sea ice extent.